



# New Technologies in Biofuel Production

Rod Bothast USDA Outlook Forum February 24<sup>th</sup>, 2005



#### **Current Ethanol Production Methods**



# **Demonstrated Improvements**

**Corn Yields** 

Hybridization; annual yield improvements – 5 fold increase

Construction Costs – 55.5% cost reduction Currently \$1-\$1.5/gallon

Net Energy Value - raised from 22 to 67% (1995 to 2001)

Process Efficiencies 2.7-2.8 gal/bu – dry grind process

#### Typical Composition Of Yellow Dent Corn



| Component    | Portion Of<br>Kernel,<br>% Dry Basis | Composition Of<br>Component Part, % Dry Basis |         |      |      |        |       |
|--------------|--------------------------------------|-----------------------------------------------|---------|------|------|--------|-------|
|              |                                      | Starch                                        | Protein | Oil  | Ash  | Sugars | Fiber |
| Endosperm    | 82.9                                 | 88.4                                          | 8.0     | 0.8  | 0.3  | 0.6    | 1.9   |
| Germ         | 11.0                                 | 11.9                                          | 18.4    | 29.6 | 10.5 | 10.8   | 18.8  |
| Bran Coat    | 5.3                                  | 7.3                                           | 3.7     | 1.0  | 0.8  | 0.3    | 86.9  |
| Tip Cap      | 0.8                                  | 5.3                                           | 9.1     | 3.8  | 1.6  | 1.6    | 78.6  |
| Whole Kernel | 100.0                                | 75.0                                          | 8.9     | 4.0  | 1.5  | 1.7    | 8.9   |



### Improving Hybrids for Dry-Grind Ethanol Production

Numerous commercial hybrids now available

Pioneer(HTF), Monsanto(PPF), Syngenta(NKEE), Regional Seed Companies

Ethanol yields increase from hybrid selection up to 4% \$1-2M annually for a 40mgy ethanol plant

Extensive research has resulted in a better understanding of the complexity

Influenced by agronomic practices (plant population, applied nitrogen, etc), environment, hybrid selection and performance

**Self-processing grains** 

Starch hydrolyzing enzymes in transgenic corn kernels (Syngenta)

## New and High Value Coproducts

New processes

QG, QGQF, Enzymatic milling, COPE,

Modified DDGS with nutrient profile

#### Coproducts

Corn oil, zein, fiber, corn fiber oil, sweeteners, polysaccharides, pharmaceuticals, nutraceuticals, biodegradable films, organic acids, solvents, amino acids, pigments, enzymes, polyols, vitamins, etc

# Raw Starch Hydrolysis





From David Johnston, Cereal Chem. 79:523-527

# Commercial Developments

ICM/ Genencor Broin/ Novozymes(BPX)

- Direct conversion without a cook step
- Reduced energy input
- Reduced capital
- Increased yields
- Lower overall costs

### **US Biomass Sources**

#### **ECONOMICAL**



### **Corn Kernel Cellulosics**

#### **Near Term Technology Validation**



No incremental supply chain Costs

**Potential 14% Yield increase** 

4.5 M gal Ethanol per plant Annually

Minimal incremental capital

**DDGS weight reduced 44%** 

No increase in corn acres

# Amounts of feedstocks to produce 10 ml ethanol

#### **Moisture Content**

Corn 15%

Fiber 46%

DDG 64%

Stover 5%



500 ml graduated cylinders used for comparisons

# Utilization of Biomass for Production of Fuel Ethanol

**Corn Fiber** 



**Pretreatment** 



**Enzymatic Saccharification** 



**Fermentation** 



**Ethanol Recovery** 

# Selected Pretreatment Strategies



## **Enzymatic Hydrolysis of Cellulose**





# Recombinant Microorganisms for Fermentation of Mixed Sugars to Ethanol

- Recombinant organisms are now available
  - Recombinant Escherichia coli
  - Recombinant Saccharomyces
  - Recombinant Zymomonas
  - Recombinant Klebsiella oxytoca
- Commercialization prospects
  - BCI with recombinant E. coli
  - logen with recombinant Saccharomyces

# Ethanol cost derived from \$50/ton corn stover versus equivalent corn prices in dry-grind processing

|        | Conversion<br>Rate<br>Gallons Per<br>Ton | Enzyme<br>Cost<br>Per Gallon | Cost Per<br>Denatured<br>Gallon | Corn<br>Equivalent<br>Prices |
|--------|------------------------------------------|------------------------------|---------------------------------|------------------------------|
| Future | 89.7                                     | \$0.10                       | \$1.25                          | 2.35                         |
|        |                                          | \$0.25                       | \$1.40                          | 2.98                         |
| Base   | 68.0 <sup>b</sup>                        | \$0.10                       | \$1.65                          | 4.02                         |
|        |                                          | \$0.25                       | \$1.79                          | 4.62                         |

From Tiffany and Eidman, 2004

